

Nuclear Modification of B-mesons in Cu+Au collisions at 200 GeV Measured Through B->J/ ψ decay by the PHENIX Experiment

Cesar Luiz da Silva* for the PHENIX Collaboration

*Los Alamos National Lab

Quark Matter 2017, Chicago

What is needed to probe QGP property with b-quarks

Heavy Flavor production at RHIC

PYTHIA6 hard scattering @ 200 GeV

Contrast with LHC where gluon splitting dominates heavy flavor production.

Initial state effects on heavy flavor

Initial state effects on gluons can suppress and enhance yields as observed in d+Au.

Probing Initial State Effects in AB collisions

- Heavy quark number is preserved in strong interactions
- total heavy quark yield depends only on initial state effects on gluons

 Final state energy loss in the medium modifies only the heavy quark p_T distribution

- B->J/ Ψ channel in PHENIX muon arms(1.2<|y|<2.2)
 - Enough boost to distinguish non-prompt J/ Ψ even at $p_T=0$

Almost flat p_T acceptance

Vertex Detectors in PHENIX

The Forward Vertex Detector (FVTX) PH*ENIX

Muon Reconstruction

MuTr

- Full muon track:
 - FVTX track + MuTr+MuID track

Large projection uncertainty of MuTr track on FVTX planes causing matching with >1 FVTX track

- Keeps all 3σ matchings
- subtract mismatches using event mixing technique

Projections at one of the **FVTX planes**

MuTr

Identifying B-meson decays

Look for non-prompt muons from dimuons in the J/Y mass region.

- Decays from long lived particles produce an asymmetric distribution.
- Detector simulation tuned with a large and clean sample of real data prompt pions and kaons reaching the MuID absorbers.

DCA_R Fits

Integrated Centrality and p_T.

BG from correlated cc and bb dimuons also produce non-prompt muons.

Important systematic uncertainties:

- cc and bb contribution
- Detector misalignments
- centrality and p_T weighting for simulated DCAR profiles
- Background normalizations

Di-muon combinatorial and FVTX-MuTr mismatch backgrounds not shown for clarity, but considered in the likelihood fit.

$F_{B\rightarrow J/\Psi}$ results in p+p

Clear transition from low energy to Tevatron, LHC.

$F_{B\to J/\Psi}$ results in p+p

FONLL/(CEM+FONLL) agree with data.

Fixed-order Next to Leading Log (FONLL) [Cacciari, JHEP 05, 007 (1998)] Color Evaporation Model (CEM) [R.Vogt et. al, Phys.Rep 462, 125 (2008)]

bb cross sections

PHENIX measure most of the bb cross section.

200 GeV result: arXiv 1702.01085 **510 GeV result**: arXiv 1701.01342

Using measured J/ Ψ cross section and $F_{B\rightarrow J/\Psi}$.

mid-rapidity from e-hadron correlation and PYTHIA extrapolation.

$F_{B\to I/\Psi}$ results in Cu+Au

Non-prompt J/ Ψ enhanced in Cu+Au collisions relative to p+p.

Reflects that B-mesons are less suppressed than prompt J/Ψ .

B-meson R_{CuAu}

- B-meson consistent with
 - NO nuclear modification
 - enhancement suggested by EPS09
- Prompt J/Ψ number is not preserved in final interactions:
 - breaking/melting in medium

What's Next

35B events on tape from 2014+2016 Au+Au runs 16x more B->J/Ψ statistics than in Cu+Au

Projection does not include:

- p+p reference uncertainties
- systematic uncertainties

Can use combined data+FONLL as p+p reference.

Great opportunity to verify mass hierarchy in initial state effects and final state energy loss.

Summary

- B-meson cross section in p+p consistent with pQCD calculations (FONLL).
- Total B-meson yield in Cu+Au collisions is consistent with binary scaling of p+p yields and nPDF enhancement
- 16x more data to come from 2014 and 2016 Au+Au runs
 - Essential information to understand quark-mass hierarch in the energy loss in QGP

EXTRA

Initial state effects measured in d+Au

- Current nPDF <u>cannot</u> describe HF at **mid-** and **backward** rapidity (large-x)
- Better agreement with multiple scattering model [Kang et al., PLB 740, 23(2014)].

B-meson R_{CuAu}

- Enhancement trend at negative rapidity also observed in
 - phi-meson in Cu+Au
 - inclusive heavy flavor in d+Au

Partonic energy loss in QGP

Energy loss:

- Gluon radiation, elastic collisions
- Gluon radiation suppressed for $\theta < M/E$ (dead cone effect)
- Low p_T B-mesons:
 - p_T<<m_b, where quark mass is relevant for energy loss

B-mesons in the PHENIX muon arms

- Decay length is boosted at large rapidities (p_z >>0) allowing to identify non-prompt particles down to p_t =0
- Flat p_T acceptance for B->J/Ψ

Backgrounds

Light, Charm and Bottom Quarks crossing QGP

Energy loss:

- Gluon radiation
- elastic collisions
- Gluon radiation suppressed for $\theta < M/E$
- Heavy quarks hadronize quickly crossing the medium as mesons or dissociated quarks

Quark mass dependency more pronounced at small p_t

B-mesons Acceptance

$$B \to J/\psi \to \mu$$

$$R_{\mathrm{CuAu}}^{\mathrm{prompt}} = rac{1 - F_{B o J/\psi}^{CuAu}}{1 - F_{B o J/\psi}^{pp}} R_{\mathrm{CuAu}}^{\mathrm{incl.}}, \ \ R_{\mathrm{CuAu}}^{B} = rac{F_{B o J/\psi}^{CuAu}}{F_{B o J/\psi}^{pp}} R_{\mathrm{CuAu}}^{\mathrm{incl.}}$$

Flat detector acceptance in small p_T region.

Clean access to small p_T B-mesons.

Boosted B-mesons:

- longer decay length
- may also have physics implications on path length until hadronization

Charm and Bottom from inclusive single muons

- Provides high statistics but needs to deal with many sources in DCA_R
 distribution.
- Very careful analysis underway with Cu+Au and p+p data sets to minimize systematics.

Opportunity in many data samples for R_{AA} and flow measurements.